Personal statement by scholarship recipient, Xiao Liu
“When I was in high school, my family moved from a mountain city to a Pacific coastal city called Dalian. I love that city, because I can walk along the beach in the evening, taste all kinds of seafood, and watch large ships in the harbor and shipyard. That was the very beginning of deciding to study ocean engineering. Now, I am a PhD student in Halifax, an Atlantic coastal city. I will continue my research in ocean engineering and I believe ‘the very beginning mind itself is the most accomplished mind of true enlightenment’.
My current work is titled ‘Research development of synchronization techniques for digital receivers working in high mobility and multipath underwater acoustic channels’. One challenge of underwater acoustic digital receivers in high mobility and multipath channels is synchronization. The strong Doppler Effect can distort the signal in both time and frequency domain. Also, multipath channel introduces inter-symbol reference (ISI) to the signal, which makes it even hard to demodulate. This work includes both symbol timing and carrier frequency recovery to compensate the clock discrepancy. My future work on this includes a more stable frequency recovery circuit and a suitable adaptive equalizer.”
Liu looks forward to finishing his PhD and graduating in the next three years. After graduation, he hopes to find a research position in the private sector or at an academic institute to continue his work. He even is thinking about becoming a teacher or professor in the long-term to continue sharing his knowledge and passion for the exploration of the uncharted world below the ocean surface. Be sure to congratulate Liu when you see him at the next IEEE Conference!
Eric is currently a doctoral student at University of Sydney Computing and Audio Research Laboratory under the supervision of Professor Craig Jin. His current research focuses sensing and processing of acoustic signals in the underwater environment, particularly with development of high-resolution passive sonar source localization methods for studying dolphin echolocation in the wild. He presented in the student poster competition at OCEANS’10 Sydney, in which he was fortunate to meet Colonel Norm Miller, who encouraged him to continue his research in marine science and ocean engineering. Eric also has a general interest in onboard systems for underwater robotic vehicles and hopes to build complete systems from the sensors, data process, display and communications to integrating all these on the vehicle itself. However, his research focuses on an entirely different complex system – a dolphin!
“Professor Whitlow Au, who is the international expert and author of “The Sonar of Dolphins”, noted: ‘Our perception of how dolphins utilize their sonar in the wild is based on extrapolation of knowledge obtained in laboratory experiments – we do not have the foggiest idea of how dolphins utilize their sonars in a natural environment’. The main focus of my thesis is the research and development of high-resolution passive sonar source localization methods for studying echolocating dolphins in the wild in order to provide new knowledge on how free-ranging dolphins use their sonars. Dolphin sonars are required to detect, localize and discriminate prey, predators, and companions, even while swimming at night or in turbid water. Preliminary results show that my technique, which I call the modified method for passive ranging by wavefront curvature, is able to locate an individual dolphin echolocating within a pod of dolphins even at long ranges (300 m).”Hopefully, my thesis will be able to clear the fog and enable us to better understand how these remarkable mammals use their sonars to survive, navigate, and avoid collisions in their natural habitats.
The IEEE Oceanic Engineering Society recognizes that the future of ocean engineering depends on the recruitment of talented, engaged young people. To encourage advanced education in ocean engineering, OES offers up to eight awards annually for $5,000 each. Graduate and undergraduate students are encouraged to apply for these grants at any time. Selections are made twice each year, with deadlines of 1 May and 1 September. Information on the application process is available on the OES website:
https://beacon.ieeeoes.org/page.cfm/cat/62/Student-Scholarship-Program/
Applications for OES scholarships are reviewed. This requires the time of volunteer members. Thanks to the following who are presently on the OES Scholarship Committee: Liesl Hotaling, Ruth Perry, Co-Chairs; Kenneth G. Foote, Philippe Courmontagne, Mal Heron, Venugopalan Pallayil, Ye Li, Arjuna Balasuriya, Hans-Peter Plag, John Watson, Hanumant Singh, Paul Hines, Hayato Kondo, Brandy Armstrong, Frederic Maussang.


Dr. James V. Candy is the Chief Scientist for Engineering and former Director of the Center for Advanced Signal & Image Sciences at the University of California, Lawrence Livermore National Laboratory. Dr. Candy received a commission in the USAF in 1967 and was a Systems Engineer/Test Director from 1967 to 1971. He has been a Researcher at the Lawrence Livermore National Laboratory since 1976 holding various positions including that of Project Engineer for Signal Processing and Thrust Area Leader for Signal and Control Engineering. Educationally, he received his B.S.E.E. degree from the University of Cincinnati and his M.S.E. and Ph.D. degrees in Electrical Engineering from the University of Florida, Gainesville. He is a registered Control System Engineer in the state of California. He has been an Adjunct Professor at San Francisco State University, University of Santa Clara, and UC Berkeley, Extension teaching graduate courses in signal and image processing. He is an Adjunct Full-Professor at the University of California, Santa Barbara. Dr. Candy is a Fellow of the IEEE and a Fellow of the Acoustical Society of America (ASA) and elected as a Life Member (Fellow) at the University of Cambridge (Clare Hall College). He is a member of Eta Kappa Nu and Phi Kappa Phi honorary societies. He was elected as a Distinguished Alumnus by the University of Cincinnati. Dr. Candy received the IEEE Distinguished Technical Achievement Award for the “development of model-based signal processing in ocean acoustics.” Dr. Candy was selected as a IEEE Distinguished Lecturer for oceanic signal processing as well as presenting an IEEE tutorial on advanced signal processing available through their video website courses. He was nominated for the prestigious Edward Teller Fellowship at Lawrence Livermore National Laboratory. Dr. Candy was awarded the Interdisciplinary Helmholtz-Rayleigh Silver Medal in Signal Processing/Underwater Acoustics by the Acoustical Society of America for his technical contributions. He has published over 225 journal articles, book chapters, and technical reports as well as written three texts in signal processing, “Signal Processing: the Model-Based Approach,” (McGraw-Hill, 1986), “Signal Processing: the Modern Approach,” (McGraw-Hill, 1988), “Model-Based Signal Processing,” (Wiley/IEEE Press, 2006) and “Bayesian Signal Processing: Classical, Modern and Particle Filtering” (Wiley/IEEE Press, 2009). He was the General Chairman of the inaugural 2006 IEEE Nonlinear Statistical Signal Processing Workshop held at the Corpus Christi College, University of Cambridge. He has presented a variety of short courses and tutorials sponsored by the IEEE and ASA in Applied Signal Processing, Spectral Estimation, Advanced Digital Signal Processing, Applied Model-Based Signal Processing, Applied Acoustical Signal Processing, Model-Based Ocean Acoustic Signal Processing and Bayesian Signal Processing for IEEE Oceanic Engineering Society/ASA. He has also presented short courses in Applied Model-Based Signal Processing for the SPIE Optical Society. He is currently the IEEE Chair of the Technical Committee on “Sonar Signal and Image Processing” and was the Chair of the ASA Technical Committee on “Signal Processing in Acoustics” as well as being an Associate Editor for Signal Processing of ASA (on-line JASAXL). He was recently nominated for the Vice Presidency of the ASA and elected as a member of the Administrative Committee of IEEE OES. His research interests include Bayesian estimation, identification, spatial estimation, signal and image processing, array signal processing, nonlinear signal processing, tomography, sonar/radar processing and biomedical applications.
Kenneth Foote is a Senior Scientist at the Woods Hole Oceanographic Institution. He received a B.S. in Electrical Engineering from The George Washington University in 1968, and a Ph.D. in Physics from Brown University in 1973. He was an engineer at Raytheon Company, 1968-1974; postdoctoral scholar at Loughborough University of Technology, 1974-1975; research fellow and substitute lecturer at the University of Bergen, 1975-1981. He began working at the Institute of Marine Research, Bergen, in 1979; joined the Woods Hole Oceanographic Institution in 1999. His general area of expertise is in underwater sound scattering, with applications to the quantification of fish, other aquatic organisms, and physical scatterers in the water column and on the seafloor. In developing and transitioning acoustic methods and instruments to operations at sea, he has worked from 77°N to 55°S.
René Garello, professor at Télécom Bretagne, Fellow IEEE, co-leader of the TOMS (Traitements, Observations et Méthodes Statistiques) research team, in Pôle CID of the UMR CNRS 3192 Lab-STICC.
Professor Mal Heron is Adjunct Professor in the Marine Geophysical Laboratory at James Cook University in Townsville, Australia, and is CEO of Portmap Remote Ocean Sensing Pty Ltd. His PhD work in Auckland, New Zealand, was on radio-wave probing of the ionosphere, and that is reflected in his early ionospheric papers. He changed research fields to the scattering of HF radio waves from the ocean surface during the 1980s. Through the 1990s his research has broadened into oceanographic phenomena which can be studied by remote sensing, including HF radar and salinity mapping from airborne microwave radiometers . Throughout, there have been one-off papers where he has been involved in solving a problem in a cognate area like medical physics, and paleobiogeography. Occasionally, he has diverted into side-tracks like a burst of papers on the effect of bushfires on radio communications. His present project of the Australian Coastal Ocean Radar Network (ACORN) is about the development of new processing methods and applications of HF radar data to address oceanography problems. He is currently promoting the use of high resolution VHF ocean radars, based on the PortMap high resolution radar.
Hanu Singh graduated B.S. ECE and Computer Science (1989) from George Mason University and Ph.D. (1995) from MIT/Woods Hole.He led the development and commercialization of the Seabed AUV, nine of which are in operation at other universities and government laboratories around the world. He was technical lead for development and operations for Polar AUVs (Jaguar and Puma) and towed vehicles(Camper and Seasled), and the development and commercialization of the Jetyak ASVs, 18 of which are currently in use. He was involved in the development of UAS for polar and oceanographic applications, and high resolution multi-sensor acoustic and optical mapping with underwater vehicles on over 55 oceanographic cruises in support of physical oceanography, marine archaeology, biology, fisheries, coral reef studies, geology and geophysics and sea-ice studies. He is an accomplished Research Student advisor and has made strong collaborations across the US (including at MIT, SIO, Stanford, Columbia LDEO) and internationally including in the UK, Australia, Canada, Korea, Taiwan, China, Japan, India, Sweden and Norway. Hanu Singh is currently Chair of the IEEE Ocean Engineering Technology Committee on Autonomous Marine Systems with responsibilities that include organizing the biennial IEEE AUV Conference, 2008 onwards. Associate Editor, IEEE Journal of Oceanic Engineering, 2007-2011. Associate editor, Journal of Field Robotics 2012 onwards.
Milica Stojanovic graduated from the University of Belgrade, Serbia, in 1988, and received the M.S. and Ph.D. degrees in electrical engineering from Northeastern University in Boston, in 1991 and 1993. She was a Principal Scientist at the Massachusetts Institute of Technology, and in 2008 joined Northeastern University, where she is currently a Professor of electrical and computer engineering. She is also a Guest Investigator at the Woods Hole Oceanographic Institution. Milica’s research interests include digital communications theory, statistical signal processing and wireless networks, and their applications to underwater acoustic systems. She has made pioneering contributions to underwater acoustic communications, and her work has been widely cited. She is a Fellow of the IEEE, and serves as an Associate Editor for its Journal of Oceanic Engineering (and in the past for Transactions on Signal Processing and Transactions on Vehicular Technology). She also serves on the Advisory Board of the IEEE Communication Letters, and chairs the IEEE Ocean Engineering Society’s Technical Committee for Underwater Communication, Navigation and Positioning. Milica is the recipient of the 2015 IEEE/OES Distinguished Technical Achievement Award.
Dr. Paul C. Hines was born and raised in Glace Bay, Cape Breton. From 1977-1981 he attended Dalhousie University, Halifax, Nova Scotia, graduating with a B.Sc. (Hon) in Engineering-Physics.