IEEE OES Japan Chapter organized the Distinguished Lecture (DL) program in June 2018 after the OCEANS’18 MTS/IEEE
Kobe / Techno-Ocean 2018 as fellows.
Ocean Acoustic Signal Processing: A Bayesian Approach by Dr. James V. Candy
Reported by Hayato Kondo, OES Japan Chapter, TC Member
On the 4th of June, 2018, a Distinguished Lecturer, Dr. James V. Candy, gave a lecture titled “Ocean Acoustic Signal Processing: A Bayesian Approach” at the Etchujima Campus of the Tokyo University of Marine Science and Technology (TUMSAT). This DL program was planned as a post event of the OCEANS’18 MTS/IEEE Kobe/Techno-Ocean 2018. Eleven participants from university, research institution and company enjoyed his thought-provoking lecture.




According to Jim, “The application of Bayesian methods to complex ocean acoustic processing problems, especially in shallow water, has evolved from well-known probability distributions like Gaussian leading to model-based, Kalman filtering solutions to nonparametric representations driven by the uncertain ocean environment leading to sequential Monte Carlo or equivalently particle filtering solutions. In this lecture, an overview of particle filtering methods coupled to a shallow ocean modal tracking application motivated by the nonlinear nature of underlying ocean acoustic phenomenology is presented. Beginning with a brief overview of Bayesian inference leading to sequential processors, the Bayesian paradigm is established. Simulation-based methods using sampling theory and sequential Monte Carlo realizations are discussed. Here the usual limitations of nonlinear approximations and non-gaussian processes prevalent in classical algorithms (e.g. Kalman filters) are no longer a restriction to perform Bayesian processing. It is shown how the underlying state variables are easily assimilated into this sequential Bayesian construct. With this in mind, the idea of a particle filter, which is a discrete nonparametric representation of a probability distribution, is developed and shown how it can be implemented using sequential methods. Finally, an oceanic application of this approach is discussed comparing the performance of the particle filter designs with that of the classical unscented Kalman filter.”
The lecture was comprehensive and high-leveled, it was well-arranged for beginners of Bayesian methods to easily understand from basics to applications by giving not only theories but also real data obtained at sea tests.
After the lecture, participants were invited to take a short-tour of the university campus. There is a Meiji-maru, a national important cultural property. She was an iron ship planned to be used as a lighthouse patrol ship, ordered by the Meiji Government from a British shipbuilder, Napier, located in Glasgow and built in 1874. The ship was a state-of-the-art ship equipped with special rooms and saloons and, in addition to patrolling lighthouses, it also served as a royal ship. (https://www.kaiyodai.ac.jp/english/overview/facilities/meijimaru.html)
![]() |
![]() |
Acoustics in Fisheries Research: Evolving Technology and
New Opportunities to Solve Old Problems by Dr. Kenneth G. Foote


Reported by Katsunori Mizuno, OES Japan Chapter,
Beacon Associate Editor
Dr. Kenneth G. Foote, who is a Senior Scientist, Applied Ocean Physics & Engineering, Woods Hole Oceanographic Institution, was invited as a distinguished lecturer and talked about the acoustic technologies in fisheries research. The title of the lecture was “Acoustics in fisheries research: evolving technology and new opportunities to solve old problems.” A total of 21 participants, including academian, business people, and students, attended his lecture. Most of the audience are concerned with the fisheries acoustic through their research and business, therefore, the lecture was filled with the excitement and seemed to be meaningful.
The lecture was started from the introduction about Dr. Foote’s achievements by Dr. Koichi Sawada, who was a group leader, National Research Institute of Fisheries Engineering, FRA. Dr. Sawada said “The greatest effort of Ken-san is a finding of the “linearity” between the backscatter strength and the abundance of fish school.” The author was really impressed because the finding was one of the most important ideas in fisheries acoustic. Dr. Sawada continued, “However, the specialty of Ken-san is “non-linear” acoustics.” It was really interesting because the expert of non-linear acoustics found the most important linear dependence!
Dr. Foote introduced broad topics of technologies in sonar and applications in fisheries research. The basic sonar performances, e.g., bandwidth, sensitivity, dynamic range, and beamforming, are still important, and consistently improved by novel powerful signal processors and platforms for the sonar. He also said the steady development may solve the general problems in fisheries research that involve detection, localization, classification, and quantification. The recent case studies related to the problems were briefly explained with the introduction of several types of sonars. These practical talks strongly attracted the participants. After the lecture, the author recalled the famous word “
(onkochishin),” which means “developing new ideas based on study of the past learning from the past”.





Dr. James V. Candy is the Chief Scientist for Engineering and former Director of the Center for Advanced Signal & Image Sciences at the University of California, Lawrence Livermore National Laboratory. Dr. Candy received a commission in the USAF in 1967 and was a Systems Engineer/Test Director from 1967 to 1971. He has been a Researcher at the Lawrence Livermore National Laboratory since 1976 holding various positions including that of Project Engineer for Signal Processing and Thrust Area Leader for Signal and Control Engineering. Educationally, he received his B.S.E.E. degree from the University of Cincinnati and his M.S.E. and Ph.D. degrees in Electrical Engineering from the University of Florida, Gainesville. He is a registered Control System Engineer in the state of California. He has been an Adjunct Professor at San Francisco State University, University of Santa Clara, and UC Berkeley, Extension teaching graduate courses in signal and image processing. He is an Adjunct Full-Professor at the University of California, Santa Barbara. Dr. Candy is a Fellow of the IEEE and a Fellow of the Acoustical Society of America (ASA) and elected as a Life Member (Fellow) at the University of Cambridge (Clare Hall College). He is a member of Eta Kappa Nu and Phi Kappa Phi honorary societies. He was elected as a Distinguished Alumnus by the University of Cincinnati. Dr. Candy received the IEEE Distinguished Technical Achievement Award for the “development of model-based signal processing in ocean acoustics.” Dr. Candy was selected as a IEEE Distinguished Lecturer for oceanic signal processing as well as presenting an IEEE tutorial on advanced signal processing available through their video website courses. He was nominated for the prestigious Edward Teller Fellowship at Lawrence Livermore National Laboratory. Dr. Candy was awarded the Interdisciplinary Helmholtz-Rayleigh Silver Medal in Signal Processing/Underwater Acoustics by the Acoustical Society of America for his technical contributions. He has published over 225 journal articles, book chapters, and technical reports as well as written three texts in signal processing, “Signal Processing: the Model-Based Approach,” (McGraw-Hill, 1986), “Signal Processing: the Modern Approach,” (McGraw-Hill, 1988), “Model-Based Signal Processing,” (Wiley/IEEE Press, 2006) and “Bayesian Signal Processing: Classical, Modern and Particle Filtering” (Wiley/IEEE Press, 2009). He was the General Chairman of the inaugural 2006 IEEE Nonlinear Statistical Signal Processing Workshop held at the Corpus Christi College, University of Cambridge. He has presented a variety of short courses and tutorials sponsored by the IEEE and ASA in Applied Signal Processing, Spectral Estimation, Advanced Digital Signal Processing, Applied Model-Based Signal Processing, Applied Acoustical Signal Processing, Model-Based Ocean Acoustic Signal Processing and Bayesian Signal Processing for IEEE Oceanic Engineering Society/ASA. He has also presented short courses in Applied Model-Based Signal Processing for the SPIE Optical Society. He is currently the IEEE Chair of the Technical Committee on “Sonar Signal and Image Processing” and was the Chair of the ASA Technical Committee on “Signal Processing in Acoustics” as well as being an Associate Editor for Signal Processing of ASA (on-line JASAXL). He was recently nominated for the Vice Presidency of the ASA and elected as a member of the Administrative Committee of IEEE OES. His research interests include Bayesian estimation, identification, spatial estimation, signal and image processing, array signal processing, nonlinear signal processing, tomography, sonar/radar processing and biomedical applications.
Kenneth Foote is a Senior Scientist at the Woods Hole Oceanographic Institution. He received a B.S. in Electrical Engineering from The George Washington University in 1968, and a Ph.D. in Physics from Brown University in 1973. He was an engineer at Raytheon Company, 1968-1974; postdoctoral scholar at Loughborough University of Technology, 1974-1975; research fellow and substitute lecturer at the University of Bergen, 1975-1981. He began working at the Institute of Marine Research, Bergen, in 1979; joined the Woods Hole Oceanographic Institution in 1999. His general area of expertise is in underwater sound scattering, with applications to the quantification of fish, other aquatic organisms, and physical scatterers in the water column and on the seafloor. In developing and transitioning acoustic methods and instruments to operations at sea, he has worked from 77°N to 55°S.
René Garello, professor at Télécom Bretagne, Fellow IEEE, co-leader of the TOMS (Traitements, Observations et Méthodes Statistiques) research team, in Pôle CID of the UMR CNRS 3192 Lab-STICC.
Professor Mal Heron is Adjunct Professor in the Marine Geophysical Laboratory at James Cook University in Townsville, Australia, and is CEO of Portmap Remote Ocean Sensing Pty Ltd. His PhD work in Auckland, New Zealand, was on radio-wave probing of the ionosphere, and that is reflected in his early ionospheric papers. He changed research fields to the scattering of HF radio waves from the ocean surface during the 1980s. Through the 1990s his research has broadened into oceanographic phenomena which can be studied by remote sensing, including HF radar and salinity mapping from airborne microwave radiometers . Throughout, there have been one-off papers where he has been involved in solving a problem in a cognate area like medical physics, and paleobiogeography. Occasionally, he has diverted into side-tracks like a burst of papers on the effect of bushfires on radio communications. His present project of the Australian Coastal Ocean Radar Network (ACORN) is about the development of new processing methods and applications of HF radar data to address oceanography problems. He is currently promoting the use of high resolution VHF ocean radars, based on the PortMap high resolution radar.
Hanu Singh graduated B.S. ECE and Computer Science (1989) from George Mason University and Ph.D. (1995) from MIT/Woods Hole.He led the development and commercialization of the Seabed AUV, nine of which are in operation at other universities and government laboratories around the world. He was technical lead for development and operations for Polar AUVs (Jaguar and Puma) and towed vehicles(Camper and Seasled), and the development and commercialization of the Jetyak ASVs, 18 of which are currently in use. He was involved in the development of UAS for polar and oceanographic applications, and high resolution multi-sensor acoustic and optical mapping with underwater vehicles on over 55 oceanographic cruises in support of physical oceanography, marine archaeology, biology, fisheries, coral reef studies, geology and geophysics and sea-ice studies. He is an accomplished Research Student advisor and has made strong collaborations across the US (including at MIT, SIO, Stanford, Columbia LDEO) and internationally including in the UK, Australia, Canada, Korea, Taiwan, China, Japan, India, Sweden and Norway. Hanu Singh is currently Chair of the IEEE Ocean Engineering Technology Committee on Autonomous Marine Systems with responsibilities that include organizing the biennial IEEE AUV Conference, 2008 onwards. Associate Editor, IEEE Journal of Oceanic Engineering, 2007-2011. Associate editor, Journal of Field Robotics 2012 onwards.
Milica Stojanovic graduated from the University of Belgrade, Serbia, in 1988, and received the M.S. and Ph.D. degrees in electrical engineering from Northeastern University in Boston, in 1991 and 1993. She was a Principal Scientist at the Massachusetts Institute of Technology, and in 2008 joined Northeastern University, where she is currently a Professor of electrical and computer engineering. She is also a Guest Investigator at the Woods Hole Oceanographic Institution. Milica’s research interests include digital communications theory, statistical signal processing and wireless networks, and their applications to underwater acoustic systems. She has made pioneering contributions to underwater acoustic communications, and her work has been widely cited. She is a Fellow of the IEEE, and serves as an Associate Editor for its Journal of Oceanic Engineering (and in the past for Transactions on Signal Processing and Transactions on Vehicular Technology). She also serves on the Advisory Board of the IEEE Communication Letters, and chairs the IEEE Ocean Engineering Society’s Technical Committee for Underwater Communication, Navigation and Positioning. Milica is the recipient of the 2015 IEEE/OES Distinguished Technical Achievement Award.
Dr. Paul C. Hines was born and raised in Glace Bay, Cape Breton. From 1977-1981 he attended Dalhousie University, Halifax, Nova Scotia, graduating with a B.Sc. (Hon) in Engineering-Physics.