Thursday, September 6, 2018
| |
| And the next one, the program of the afternoon. |
| |
On a very sunny day, the IEEE milestone ceremony for celebrating “The French Transatlantic Telegraph Cable, 1898” took place in Orleans, MA. The picture below presents the dedication of the milestone.
The following page provides the keynote address from René Garello, past President of the IEEE Oceanic Engineering Society, along with some pictures of the ceremony.
René Garello Keynote Address
Mr. President, dear colleagues, ladies and gentlemen,
At first, thank you for inviting me to attend this ceremony. I’m honored and very pleased to be here in this beautiful surrounding. My name is René Garello and I’m bearing several hats here. One being as a representative of the French and Brittany community, still faithful to the history of the cable “Le Direct”. Indeed, the site of Deolen, where the cable started, in Locmaria-Plouzané, near Brest in France, is about 1 mile away from my house. I’d like to thank the supportive groups (“associations” in French) of “Locmaria Patrimoine” and “Les Amis de Deolen” helping me to smooth administrative hurdles, the county authorities giving all authorizations, the IEEE France section accompanying the process and mainly the IEEE Oceanic Engineering Society when, as President, I promoted the installation of the very same plaque on the coastal trail, at the cable station last year in Deolen.
This Plaque is an IEEE Milestone. What Does it Mean?
It’s meant to be a remembering of a great achievement in IEEE history. IEEE, and Jim (1) could tell you more, resulted in 1963 of the merging/convergence of, on the one hand the AIEE (American Institute of Electrical Engineers), the “Electrical” side of the IEEE, founded in 1884 with such big names as Thomas Edison or Graham Bell (Electricity, telegraph, telephone) and on the other hand, the “Communication” side with the IRE (Institute of Radio Engineers) founded in 1912 and arising from Marconi’s works in 1895/96 with an evolution to electronics (vacuum tube, transistors, …).
But already in the beginning to the mid-19th century, we had the early stages of what is the core of IEEE: “Information” and therefore its communication. Humankind has always been very clever in trying to communicate, to send messages by any available means: by foot, by horses, by ships, fire signals, sound signals (bells, canons, …), etc. It shaped large portions of the economy and, of course, via the technical developments, long-range planning that could seem futile today. For instance, raising great quantities of trees for the fire signals in the light houses (semaphores) or for having very straight and long tree trunks for the ship masts.
Communication! Leo Tolstoy asked the question “What is art?”, replied “Art is communication.” But what was a more essential problem then?
Time! Time is the Answer
Time for sending, for transmitting. Time because the messages were too long to bear some significance or useful content using those primitives means over long distances. At the end of the 18th century, Claude Chappe (and his brother) invented the earlier version of the telegraph (they called it so). That was optical (semaphore) and worked only during the day and in clear air. But it was the beginning of yet another IEEE core: coding or in this case, transcoding the alphabet and the 10 digits. The system was delivering short messages, on land or near the coast, as fast as 500 km/h (about 140 m/s, much faster than any horse). And in the first half of the 19th century two main “discoveries” took place: electricity sent through a copper wire in 1837 and the Morse code in 1838 (replacing the more complicated Chappe code). That achievement was nevertheless only used for terrestrial transmissions.
The media industry was delighted: fresh news (and not fake news …). And also, the militaries, of course (war being another matter in which Humankind is very good at). The system was able to deliver 100 words in 5’!
| The French cable Station Museum. | Keynote address from René Garello. |
| |
|
| Cathy Ann Clark, Providence Section Chair. | Jim Jefferies, IEEE President. |
But a much bigger challenge was to bring news to another continent. The Atlantic was the next frontier. The only means then was by ship, meaning two to three weeks to send anything. Within a very short span of time, fantastic developments were achieved. I’m still amazed and marveled by the ability of humankind to adapt solutions. The “obvious” one was to lay a cable between the two continents. The first tests were in the Mediterranean, but the Atlantic Ocean is an order of magnitude larger. The driver was, as often, commercial (money). Investing in submarine cables was much more profitable than in railways for instance. And now, the challenge was there: over 3,500 miles of cable, weighting about 20 tons/mile! Transporting these cables wasn’t trivial. Huge boats (100 to 200 meters long) were conceived. I won’t detail what is described in the museum behind me. Great Britain was the main leader in the 1860s, with cables from England to Newfoundland and then Cape Cod (Duxbury). The USA weren’t yet interested, being in the midst of the secession war. The first cables from the French side weren’t a commercial success. A company, by the way mainly funded by British capital, installed a cable from Brest to St Pierre et Miquelon, near Newfoundland and Cape Cod again.
| |
|
| René Garello, IEEE OES Junior Past President. | Group picture, René Garello, Michael Geselowitz, Jim Jefferies, Cathy Ann Clark, Joseph Mana, Rob Munier and Ron Brown (L to R). |
| |
|
| Jim Jefferies, unveiling the plaque. |
In any case we were entering a new era. The first cables showed this by being able to send around 20 words per minute. The world started to shrink! Of course, big countries couldn’t be satisfied by a British monopoly. Hence the other driver for the “submarine cables” was political. That is the main reason behind the support of what we are here today to celebrate; the “Le Direct” Transatlantic cable. Indeed, the indirect paths via Newfoundland weren’t secure enough, were difficult to maintain and mainly operated through Great Britain. “Le Direct” proved its efficiency by being operated for many decades before being obsolete in the mid ’50s with the new co-axial cable technologies allowing more simultaneous messages (telex, telephone) to be sent. “Le Direct” was a success and for what concerns France a model, duplicated to other important places at this time, that is the African continent and the French colonies.
In closing, what is the status today? The former copper in the cables was replaced mainly by fiber optics. Most of our digital communications are nowadays still using cables. Over 99% of the traffic is underwater with above 300 cables totaling one million kilometers of cable and dozens of cable ships. So, yes, recognizing the “Le Direct” cable as a pioneer for bringing the world to a new stage is evident. And recognizing it as an IEEE milestone is more than natural: “Advancing technology for Humanity” is exactly what “Le Direct” did.
Thank you for your attention.
1) Jim Jefferies, IEEE President & CEO
From Cape Cod Chronicle, September 13, 2018


Dr. James V. Candy is the Chief Scientist for Engineering and former Director of the Center for Advanced Signal & Image Sciences at the University of California, Lawrence Livermore National Laboratory. Dr. Candy received a commission in the USAF in 1967 and was a Systems Engineer/Test Director from 1967 to 1971. He has been a Researcher at the Lawrence Livermore National Laboratory since 1976 holding various positions including that of Project Engineer for Signal Processing and Thrust Area Leader for Signal and Control Engineering. Educationally, he received his B.S.E.E. degree from the University of Cincinnati and his M.S.E. and Ph.D. degrees in Electrical Engineering from the University of Florida, Gainesville. He is a registered Control System Engineer in the state of California. He has been an Adjunct Professor at San Francisco State University, University of Santa Clara, and UC Berkeley, Extension teaching graduate courses in signal and image processing. He is an Adjunct Full-Professor at the University of California, Santa Barbara. Dr. Candy is a Fellow of the IEEE and a Fellow of the Acoustical Society of America (ASA) and elected as a Life Member (Fellow) at the University of Cambridge (Clare Hall College). He is a member of Eta Kappa Nu and Phi Kappa Phi honorary societies. He was elected as a Distinguished Alumnus by the University of Cincinnati. Dr. Candy received the IEEE Distinguished Technical Achievement Award for the “development of model-based signal processing in ocean acoustics.” Dr. Candy was selected as a IEEE Distinguished Lecturer for oceanic signal processing as well as presenting an IEEE tutorial on advanced signal processing available through their video website courses. He was nominated for the prestigious Edward Teller Fellowship at Lawrence Livermore National Laboratory. Dr. Candy was awarded the Interdisciplinary Helmholtz-Rayleigh Silver Medal in Signal Processing/Underwater Acoustics by the Acoustical Society of America for his technical contributions. He has published over 225 journal articles, book chapters, and technical reports as well as written three texts in signal processing, “Signal Processing: the Model-Based Approach,” (McGraw-Hill, 1986), “Signal Processing: the Modern Approach,” (McGraw-Hill, 1988), “Model-Based Signal Processing,” (Wiley/IEEE Press, 2006) and “Bayesian Signal Processing: Classical, Modern and Particle Filtering” (Wiley/IEEE Press, 2009). He was the General Chairman of the inaugural 2006 IEEE Nonlinear Statistical Signal Processing Workshop held at the Corpus Christi College, University of Cambridge. He has presented a variety of short courses and tutorials sponsored by the IEEE and ASA in Applied Signal Processing, Spectral Estimation, Advanced Digital Signal Processing, Applied Model-Based Signal Processing, Applied Acoustical Signal Processing, Model-Based Ocean Acoustic Signal Processing and Bayesian Signal Processing for IEEE Oceanic Engineering Society/ASA. He has also presented short courses in Applied Model-Based Signal Processing for the SPIE Optical Society. He is currently the IEEE Chair of the Technical Committee on “Sonar Signal and Image Processing” and was the Chair of the ASA Technical Committee on “Signal Processing in Acoustics” as well as being an Associate Editor for Signal Processing of ASA (on-line JASAXL). He was recently nominated for the Vice Presidency of the ASA and elected as a member of the Administrative Committee of IEEE OES. His research interests include Bayesian estimation, identification, spatial estimation, signal and image processing, array signal processing, nonlinear signal processing, tomography, sonar/radar processing and biomedical applications.
Kenneth Foote is a Senior Scientist at the Woods Hole Oceanographic Institution. He received a B.S. in Electrical Engineering from The George Washington University in 1968, and a Ph.D. in Physics from Brown University in 1973. He was an engineer at Raytheon Company, 1968-1974; postdoctoral scholar at Loughborough University of Technology, 1974-1975; research fellow and substitute lecturer at the University of Bergen, 1975-1981. He began working at the Institute of Marine Research, Bergen, in 1979; joined the Woods Hole Oceanographic Institution in 1999. His general area of expertise is in underwater sound scattering, with applications to the quantification of fish, other aquatic organisms, and physical scatterers in the water column and on the seafloor. In developing and transitioning acoustic methods and instruments to operations at sea, he has worked from 77°N to 55°S.
René Garello, professor at Télécom Bretagne, Fellow IEEE, co-leader of the TOMS (Traitements, Observations et Méthodes Statistiques) research team, in Pôle CID of the UMR CNRS 3192 Lab-STICC.
Professor Mal Heron is Adjunct Professor in the Marine Geophysical Laboratory at James Cook University in Townsville, Australia, and is CEO of Portmap Remote Ocean Sensing Pty Ltd. His PhD work in Auckland, New Zealand, was on radio-wave probing of the ionosphere, and that is reflected in his early ionospheric papers. He changed research fields to the scattering of HF radio waves from the ocean surface during the 1980s. Through the 1990s his research has broadened into oceanographic phenomena which can be studied by remote sensing, including HF radar and salinity mapping from airborne microwave radiometers . Throughout, there have been one-off papers where he has been involved in solving a problem in a cognate area like medical physics, and paleobiogeography. Occasionally, he has diverted into side-tracks like a burst of papers on the effect of bushfires on radio communications. His present project of the Australian Coastal Ocean Radar Network (ACORN) is about the development of new processing methods and applications of HF radar data to address oceanography problems. He is currently promoting the use of high resolution VHF ocean radars, based on the PortMap high resolution radar.
Hanu Singh graduated B.S. ECE and Computer Science (1989) from George Mason University and Ph.D. (1995) from MIT/Woods Hole.He led the development and commercialization of the Seabed AUV, nine of which are in operation at other universities and government laboratories around the world. He was technical lead for development and operations for Polar AUVs (Jaguar and Puma) and towed vehicles(Camper and Seasled), and the development and commercialization of the Jetyak ASVs, 18 of which are currently in use. He was involved in the development of UAS for polar and oceanographic applications, and high resolution multi-sensor acoustic and optical mapping with underwater vehicles on over 55 oceanographic cruises in support of physical oceanography, marine archaeology, biology, fisheries, coral reef studies, geology and geophysics and sea-ice studies. He is an accomplished Research Student advisor and has made strong collaborations across the US (including at MIT, SIO, Stanford, Columbia LDEO) and internationally including in the UK, Australia, Canada, Korea, Taiwan, China, Japan, India, Sweden and Norway. Hanu Singh is currently Chair of the IEEE Ocean Engineering Technology Committee on Autonomous Marine Systems with responsibilities that include organizing the biennial IEEE AUV Conference, 2008 onwards. Associate Editor, IEEE Journal of Oceanic Engineering, 2007-2011. Associate editor, Journal of Field Robotics 2012 onwards.
Milica Stojanovic graduated from the University of Belgrade, Serbia, in 1988, and received the M.S. and Ph.D. degrees in electrical engineering from Northeastern University in Boston, in 1991 and 1993. She was a Principal Scientist at the Massachusetts Institute of Technology, and in 2008 joined Northeastern University, where she is currently a Professor of electrical and computer engineering. She is also a Guest Investigator at the Woods Hole Oceanographic Institution. Milica’s research interests include digital communications theory, statistical signal processing and wireless networks, and their applications to underwater acoustic systems. She has made pioneering contributions to underwater acoustic communications, and her work has been widely cited. She is a Fellow of the IEEE, and serves as an Associate Editor for its Journal of Oceanic Engineering (and in the past for Transactions on Signal Processing and Transactions on Vehicular Technology). She also serves on the Advisory Board of the IEEE Communication Letters, and chairs the IEEE Ocean Engineering Society’s Technical Committee for Underwater Communication, Navigation and Positioning. Milica is the recipient of the 2015 IEEE/OES Distinguished Technical Achievement Award.
Dr. Paul C. Hines was born and raised in Glace Bay, Cape Breton. From 1977-1981 he attended Dalhousie University, Halifax, Nova Scotia, graduating with a B.Sc. (Hon) in Engineering-Physics.